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1. Introduction 

It was a recognition of cartographic symbols of certain type that caused the present 

investigation. As far as the pictures under recognition are binary ones, it is natural that the pictures 

are to be recognized using the information about their contours.  On the one hand, the contour 

description contains the same all information about a picture as the primary raster representation. 

On the other hand, the contour representation can be considered as a function that is defined on the 

one-dimensional cell complex [1]. It makes the related analysis much more simple than the analysis 

of raster representation, whose domain is a two-dimensional cell complex. In spite of  this one-

dimensionality of contours, their analysis can be very rarely reduced directly to the analysis of the 

strings, as it was made in [2]. This is because a string has an unclosed structure with two elements, 

which form the ends of the string, while contour has a cyclic structure with no such elements [3]. 

When a string is analyzed from left to right, there is a single element at every step of the analysis, 

that has been already observed and that has a neighbour among the elements, which have not been 

observed yet. That is, there is a single point, that serves as a border between past and future 

elements. As to contour analysis, there are two such border points even if  it is possible to analyze 

contour’s elements one-by-one in the order they occur during contour tracing, e.g., clockwise. If 

such  tracing is not possible, e.g. if contour is to be analyzed  during line-by-line scanning of the 

picture,  the subset of contour’s elements, which are already examined, may consist of many 

disjoint parts, and the number of border points between past and future elements can be large 

enough. All these peculiarities of contours complicate their structural analysis but do not make it 

hopeless. The main concept, the problems are stated and solved in this article by, is the set of 

allowable contours. This concept is defined by the certain formal tools, which are similar to formal 

grammars, but it takes into account the above mentioned distinctions of contours from strings. 

These tools, as well as the exact matching problem are defined in the next section. Two algorithms 

of the exact matching are described in section 3. The first of them is been suitable, if  contour’s 

elements are analyzed in the order they occur during the contour tracing. The second one is 
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intended for the analysis of contour during line-by-line scanning of the image. In the section 

4 certain general form of the best matching problem is stated and the general form of its solution is 

described. 

 

2. Exact matching problem and related algorithms 
2.1.Formal statement of the problem 

Let   T  be finite set. Let us assume that for every element  t T∈  the next element  t + and 

preceding element   t− are defined, such that for every t T∈  the following equalities hold 

  ( ) ( )t t+ − − += and    t t t t+ −≠ ≠, .  

The set  T is a cycle or a group of  cycles. Let V  be the set of signals and   S be a finite set 

of states. A contour is defined as a function v T V: .→  A set of allowable contours is been 

defined by the certain function f S V S: { , }.× × → 0 1  Then the contour   v T V: →  is defined as 

allowable one with the respect to the function f , if there exists such function  s T S: →  that for 

every   t T∈ satisfies the condition   f s t v t s t( ( ), ( ), ( )) .− = 1 To solve the exact matching problem 

means to construct the algorithm that for every given contour v T V: → and given 

function f S V S: { , }× × → 0 1   decides, whether v is allowable with respect to   f . It means that 

exact matching consists in calculating the value 

     )]}                                               F v s t f s t v t s t( ) { [ ( ( ), ( ), ( ) ( )= ∃ ∀ − 1  

 

2.2. Exact matching of strings 

The predicate (1) is similar to those for decision whether a string belongs to regular language. 

Really, let   V and  S  are terminal and nonterminal alphabets of some regular grammar  G and 

  σ∈ S be its axiom. Then the function f S V S: { , }× × → 0 1 corresponds to the set of production 

rules of type   s vs s S v V s S→ ∈ ∈ ∈' , , , ' , and another function  ϕ : { , }S V× → 0 1  

corresponds to the set of  production rules of type  s v s S v V→ ∈ ∈, , .  In this case the string 

 v v v v n= ( ), ( ),... ( )1 2  is considered to belong to the language of the grammar   G if 

   
                                                                                     
F v s s s n t n f s t v t s t

s n v n
( ) ( ), ( ),..., ( ){[ , ,..., ( ( ( ), ( ), ( ))] &

& ( ( ), ( ))} , ( )
= ∃ − ∀ = − −

− =
1 2 1 12 1 1

1 1 2ϕ  

with  s( ) .0 = σ  

It is known that the predicate (2) can be calculated by means of the following auxiliary 

functions  g S i ni : { , }, , ,... ,→ = −0 1 0 1 1 using the following expressions 
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The total computational complexity of (3) is of order   k n2 ⋅ ,  where   k is the number of 

nonterminal symbols. 

 

2.3. Exact matching of contours during contour tracing 

In this section the algorithm for calculating of (1) will be described for the case when it is 

possible to pass around the contour. It means that the contour is analyzed element-by-element so, 

that if the element   v t( ) was examined at some step then the element   v t( )+ should be examined 

at the next step. Let us consider the step when some current t T∈ is examined and the current 

signal value  v t( ) is observed. The cycle of T, which t belongs to, will be called the current 

cycle. 

Before the analysis of the signal v t( ) the algorithm has at its disposal the certain 

information about the part of contour that was already examined. This information is arranged as a 

function   g S St− × →: { , },01 where t − is the last element among the elements that are already 

examined. The value   g s st− ( , ') determines, whether up-to-now examined part of contour is 

allowable under the condition that the start and final states are s and  s' correspondingly. At the 

step when the contour signal v t( ) is observed the algorithm constructs the function 

  g S St : { , },× → 01 using the current value v t( ) and, in general, the function   gt− , according to 

the following rules. 

a). If the current element   t is the first element of the current cycle then  

                                                         g s s f s v t st ( , ') ( , ( ), '). ( )= 4  

b). If the current element   t is the last element of the current cycle and the current cycle is 

not the last one, then 

if                                      ∃ −s s g s s f s v t st, '[ ( , ')& ( ', ( ), )] ( )5  

                then no action is fulfilled; 

                else decision is made that the contour is not allowable. 

c). If the current element  t is the last element of the current cycle and the current cycle is 

also the last one, then  

                if                  ∃ −s s g s s f s v t st, '[ ( , ' )& ( ', ( ), )]  
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                then the decision is made that the contour is allowable; 

                 else decision is made that the contour is not allowable. 

d). If the current element   t is neither the first nor the last element of the current contour then 

                                       g s s s g s s f s v t st t( , ') ' '[ ( , ' ')& ( '', ( ), ')]. ( )= ∃ − 6  

Computational complexity of the calculation is defined by computational complexity of (6) 

and is of order Such growth of the complexity, as compared with the string matching is an 

inevitable expenditure for the dealing with the cyclic structure, which is more complex the a string. 

Nevertheless, under certain conditions the order of the complexity can be reduced. 

Let with some t the function of two variables g s st ( , ') can be represented by two functions 

of one variable such that  

                                                                   g s s g s g st
b

t
e( , ') ( )& ( '). ( )= 7  

If this condition occurs to be valid for some t then computational complexity of the rest of 

computations for the current cycle can be reduced from k n3 ⋅ ' to   k n2 ⋅ ' , where n' is the 

number of the rest of elements in the current cycle. Really, if (7) occurs, then 

                             
                           =  

g s s s g s g s f s v t s
g s s g s f s v t s

t
b

t
e

b
t
e

+ = ∃ =
∃

+

+

( , ' ) ' '[ ( )& ( ' ' )& ( ' ' , ( ), ' )] ( )
( )& { ' '[ ( ' ' )& ( ' ' , ( ), ' )]}.

8
 

Let denote 

                                                           g s s g s f s v t st
e

t
e

+ = ∃ +( ') ' '[ ( ' ' )& ( ' ' , ( ), ') ( )9  

and therefore obtain 

                                                                             g s s g s g st
b

t
e

+ +=( , ') ( )& ( '). ( )10  

It means that if for some   t the condition (7) occurs to be valid then it is also valid for 

  t+ . Moreover, the first multiplier from (7) is not changed and the second multiplier must be 

calculated using (9), and complexity order becomes less than complexity order of (6).  

 

2.4. Exact matching  of contours during arbitrary ordered examination  

          of contour elements 

Let us consider the situation when the algorithm can observe signals   v t( ) not during the 

contour tracing but in arbitrary order, for example during line-by-line scanning of the image. 

Let at current step the algorithm observe the pair t  and v t( ), where   t is certain contour 

element and   v t( ) is the signal that corresponds to this element. Let us suppose that at this step the 

algorithm has already observed some set (possibly empty) of contour signals. This set consists of 

certain connected subsets of contour segments. We will refer these subsets as connected segments. 
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Let   T ' be one of observed connected contour segments that is not a cycle yet. Such 

segment has start element and final element. Let tb be the element that precedes the start element 

and   te be the final element. Let  s T( ') be the function T t Se' \{ } .→ Denote 

  g s t s t s T f s t v t s tt t b e
t Tb e, ( ( ), ( )) ( ')[ ( ( ), ( ), ( ))].&= ∃
∈

−  

The recognition algorithm must work in such a way that at every step it must keep in its 

memory the list of triples  ( , , ),t t gb e t tb e
 corresponding to the observed connected contour 

segments that still are not cycles. We will describe the recognition algorithm as the set of actions 

that must be performed at every step when the algorithm observes the next contour element  (a pair 

  ( , ( ))t v t ). Those actions depend on how this element is connected with elements that have 

already been observed at previous steps. Let us describe those actions. 

a)Join to the end of the segment. If in the list of triples there is a triple  ( , , ),t t gb e t tb e
such 

that   t te = − and there is no such triple that t tb = , then this triple is excluded from the list and 

new triple  ( , , ),t t gb t tb
is introduced, where gt tb , is calculated as 

             g s t s t s t g s t s t f s t v t s tt t b e t t b e eb b e, ,( ( ), ( )) ( )[ ( ( ), ( ))& ( ( ), ( ), ( ))]. ( )= ∃ 11  

 

b) Join to the beginning of the segment. If in the list of triples there is a triple 

  ( , , ),t t gb e t tb e
such that   t tb = then triple ( , , ),t t gb e t tb e

 is replaced by new triple 

  ( , , ),,t t ge t te
−

− where  

                      g s t s t s t f s t v t s t g s t s tt t e t t ee e−
− −= ∃, ,( ( ), ( )) ( )[ ( ( ), ( ), ( ))& ( ( ), ( ))]. ( )12  

 

c) Merging of contour segments. If in the list of triples there are a triple   ( , , ),t t gb t tb

−
− and a 

triple   ( , , ),t t ge t te and those triples do not coincide, both of the triples are replaced by one new 

triple   ( , , ),,t t gb e t tb e
where  

                                

                                                
                                                

g s t s t s t s t g s t s t

f s t v t s t
g s t s t

t t b e t t b

t t e

b e b

e

, ,

,

( ( ), ( )) ( ), ( )[ ( ( ), ( ))& ( )

& ( ( ), ( ), ( ))&
& ( ( ), ( ))].

= ∃ − −

−

− 13

 

d) Completing the cycle. If in the list of triples there is a triple   ( , , ),t t gt t
−

− then we 

calculate the value 

                           R s t s t g s t s t f s t v t s tt t= ∃ − − −
−( ), ( )[ ( ( ), ( ))& ( ( ), ( ), ( ))]. ( ), 14  
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If   R = 0  then the contour is not allowable. 

If   R = 1  and the element  ( , ( ))t v t is the last element of the contour then decision is made 

that the contour is allowable. 

If   R = 1  and the element  ( , ( ))t v t  is not the last element of the contour (for example, if 

contour consists of several cycles) then the triple   ( , , ),t t gt t
−

− is excluded from the list and we 

must continue contour analysis. 

e) Starting new cycle. If in the list of triples there is neither triple   ( , , ),t t gb t tb

−
−  nor triple 

  ( , , ),t t ge t te  then the new triple   ( , , ),t t gt t
−

−  is introduced, where 

                                                             g s t s t f s t v t s tt t−
− −=, ( ( ), ( )) ( ( ), ( ), ( )). ( )15  

If it is possible to arrange the storing of the list of triples in such a way that checking of 

presence of the triple in the list does not depend of the volumes of  S   and  T   then computational 

complexity of the algorithm is determined by the computational complexity of calculations of  (11)-

(15). In this case the complexity is of order  k n3 ⋅ , that is the same as in the case of contour 

tracing. Moreover, in the above-mentioned algorithm we can also use the fact that if some function 

  g s st t, ' ( , ')  can be represented  as  g s g st t( )& ( ')'  then starting from this step the further analysis 

of the cycle will have the complexity of order  k 2  instead of .k 3  

 
3. Best matching problem 

There are several different formulations for the problem of evaluation of the correspondence 

between an object and the class of objects. We will consider three of them, propose the general 

formulation of the problem and discuss a common algorithm for solving the problem. 

The most widespread method consists in introduction of some metric over the set of objects 

and the task itself is to find such an object from the given set that is nearest to examined one in this 

metric. Such minimal distance estimates how precisely the given object matches with an object 

from  the given set. It was shown in [4] that if Levenstein metric [5] is used, then the best matching 

problem is reduced to calculation of the function 

                                                                F v f s t v t s t
S t T

( ) min ( ( ), ( ), ( )), ( )= −

∈
∑ 16  

where   f  is some function taking real values. 

Another class of  best matching problems uses ideas of fuzzy sets. Such problems are 

reduced to calculation of the function 

                                                          F v f s t v t s t
S t T

( ) minmax ( ( ), ( ), ( )). ( )=
∈

− 17  



 

 

7

For the best matching problems of the third class it is necessary to calculate the 

distance from examined object to   q  nearest objects from the set [6]. 

Let us formulate general definition of  these problems. Let V  and   S  be the finite set of 

signals and finite set of states (nonterminals), T  be the cycle or the group of cycles, v T V: →  

be a contour and   f  be the function which has the set S V S× ×  as its domain and takes its values 

on the commutative semi-ring   W [7]. Let the ring operations denoted by   ⊕  and ⊗ are 

defined for   W.  All above listed types of best matching problem can be formulated as the 

calculation of the element from   W  in accordance with the formula 

                                                                F v f s t v t s t
s t T

( ) ( ( ), ( ), ( )). ( )= ⊕ ⊗
∈

− 18  

In (18) the sign    ⊕
s

means the “summation” over the set of all possible functions 

   T S→ .  
Expression (18) coincides with expression (1) if W  is the set  { , },  0 1 ⊕ means 

disjunction and   ⊗ means conjunction. 

It coincides with expression (16) if W  is, for example, the set of integers, ⊕ means 

  min  and   ⊗ means addition. If ⊕ means min and ⊗ means  max it coincides with 

(17). 

The third class of best matching problems can be reduced to (18) if   W is the set of  

nondecreasing sequences each of them having length q. Let  x x x xq= ( , ,..., )1 2 and 

  y y y yq= ( , ,..., )1 2 be such two sequences. In this case the sequence   x y⊕ is defined as 

follows: it is necessary to make the concatenation of x and y, to order the resulting sequence as 

nondecreasing one and to take its first q elements. To obtain the sequence   x y⊗ it is necessary 

to calculate   q2 values of  ,  x yi j+ to order obtained set as nondecreasing sequence and to take its 

first   q elements. 

The algorithm for calculating of (18) for the case of arbitrary order scanning of contour 

elements has the same structure as it was described in section 2.4 for calculating of (1). Expressions 

(11)-(14) must be rewritten in generalized form as follows 

For (11) 

              g s t s t g s t s t f s t v t s tt t b s t t t b e eb
e

b e, ( ) ,( ( ), ( )) [ ( ( ), ( )) ( ( ), ( ), ( ))]. ( )= ⊕ ⊗ 19  

For (12) 

                      g s t s t f s t v t s t g s t s tt t e s t t t ee e−
− −= ⊕ ⊗, ( ) ,( ( ), ( )) [ ( ( ), ( ), ( )) ( ( ), ( ))]. ( )20  

For (13) 
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g s t s t g s t s t

f s t v t s t
g s t s t

t t b e
s t s t t t b

t t e

b e b

e

,
( ) ( ) ,

,

( ( ), ( )) [ ( ( ), ( )) ( )

( ( ), ( ), ( ))
( ( ), ( ))].

= ⊕ ⊕ ⊗

⊗ ⊗
⊗

−
−

−

−

21

 

For (14) 

                                    R g s t s t f s t v t s t
s t s t t t= ⊕ ⊕ ⊗

−
−

− −
( ) ( ) ,[ ( ( ), ( )) ( ( ), ( ), ( ))]. ( )22  

The condition of possibility to reduce the computational complexity is a generalization of the 

condition (7) and can be expressed as 

                                     g s s g s g st t t t, ' '( , ') ( ) ( ').= ⊗  

4. Implementation 

Some of proposed ideas were implemented for the development of  the program for 

recognition of  mapping symbols. 
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